28 research outputs found

    Interval Type-2 Fuzzy Programming Method for Risky Multicriteria Decision-Making with Heterogeneous Relationship

    Get PDF
    We propose a new interval type-2 fuzzy (IT2F) programming method for risky multicriteria decision-making (MCDM) problems with IT2F truth degrees, where the criteria exhibit a heterogeneous relationship and decision-makers behave according to bounded rationality. First, we develop a technique to calculate the Banzhaf-based overall perceived utility values of alternatives based on 2-additive fuzzy measures and regret theory. Subsequently, considering pairwise comparisons of alternatives with IT2F truth degrees, we define the Banzhaf-based IT2F risky consistency index (BIT2FRCI) and the Banzhaf-based IT2F risky inconsistency index (BIT2FRII). Next, to identify the optimal weights, an IT2F programming model is established based on the concept that BIT2FRII must be minimized and must not exceed the BIT2FRCI using a fixed IT2F set. Furthermore, we design an effective algorithm using an external archive-based constrained state transition algorithm to solve the established model. Accordingly, the ranking order of alternatives is derived using the Banzhaf-based overall perceived utility values. Experimental studies pertaining to investment selection problems demonstrate the state-of-the-art performance of the proposed method, that is, its strong capability in addressing risky MCDM problems

    An External Archive-Based Constrained State Transition Algorithm for Optimal Power Dispatch

    Get PDF
    This paper proposes an external archive-based constrained state transition algorithm (EA-CSTA) with a preference trade-off strategy for solving the power dispatch optimization problem in the electrochemical process of zinc (EPZ). The optimal power dispatch problem aims to obtain the optimal current density schedule to minimize the cost of power consumption with some rigorous technology and production constraints. The current density of each production equipment in different power stages is restricted by technology and production requirements. In addition, electricity price and current density are considered comprehensively to influence the cost of power consumption. In the process of optimization, technology and production restrictions are difficult to be satisfied, which are modeled as nonconvex equality constraints in the power dispatch optimization problem. Moreover, multiple production equipment and different power supply stages increase the amount of decision variables. In order to solve this problem, an external archive-based constrained state transition algorithm (EA-CSTA) is proposed. The external archive strategy is adopted for maintaining the diversity of solutions to increase the probability of finding the optima of power dispatch optimization problem. Moreover, a preference trade-off strategy is designed to improve the global search performance of EA-CSTA, and the translation transformation in state transition algorithm is modified to improve the local search ability of EA-CSTA. Finally, the experimental results indicate that the proposed method is more efficient compared with other approaches in previous papers for the optimal power dispatch. Furthermore, the proposed method significantly reduces the cost of power consumption, which not only guides the production process of zinc electrolysis but also alleviates the pressure of the power grid load

    A fast constrained state transition algorithm

    No full text
    Zhou X, Tian J, Long J, Jin Y, Yu G, Yang C. A fast constrained state transition algorithm. Neurocomputing. 2021;455:202-214.When solving constrained optimization problems in real industrial processes, both optimality and computational efficiency need to be considered. However, most existing meta-heuristic algorithms are slow to find the global optimum. The first reason is that the way to generate and select candidate solutions is time-consuming. The low probability to generate and select potential solutions in assisting the computational efficiency is another reason. In this paper, a simplified state transition algorithm (STA) and a novel constraint-handling technique are proposed to address the above issues for small size constrained optimization problems. Firstly, three out of four operators in basic STA to produce candidate solutions are selected and two operators are modified with adaptive parameter tuning, which have a large probability to generate potential solutions, but consumes less time. Secondly, the constraint-handling technique considers not only the objective function value and the constraint violation but also the difference among candidate solutions. Thirdly, the sequential quadratic programming embedded into the simplified STA can further speed up the convergence. Experiments are conducted on 22 well-known test functions from IEEE CEC2006 and 4 engineering constrained optimization problems, in comparison with state-of-the-art algorithms. The experimental results show that the proposed method is competitive in finding the optimum faster

    Interval Type-2 Fuzzy Programming Method for Risky Multicriteria Decision-Making with Heterogeneous Relationship

    Get PDF
    We propose a new interval type-2 fuzzy (IT2F) programming method for risky multicriteria decision-making (MCDM) problems with IT2F truth degrees, where the criteria exhibit a heterogeneous relationship and decision-makers behave according to bounded rationality. First, we develop a technique to calculate the Banzhaf-based overall perceived utility values of alternatives based on 2-additive fuzzy measures and regret theory. Subsequently, considering pairwise comparisons of alternatives with IT2F truth degrees, we define the Banzhaf-based IT2F risky consistency index (BIT2FRCI) and the Banzhaf-based IT2F risky inconsistency index (BIT2FRII). Next, to identify the optimal weights, an IT2F programming model is established based on the concept that BIT2FRII must be minimized and must not exceed the BIT2FRCI using a fixed IT2F set. Furthermore, we design an effective algorithm using an external archive-based constrained state transition algorithm to solve the established model. Accordingly, the ranking order of alternatives is derived using the Banzhaf-based overall perceived utility values. Experimental studies pertaining to investment selection problems demonstrate the state-of-the-art performance of the proposed method, that is, its strong capability in addressing risky MCDM problems

    Influence Analysis and Stepwise Regression of Coal Mechanical Parameters on Uniaxial Compressive Strength Based on Orthogonal Testing Method

    No full text
    Uniaxial compressive strength (UCS) and peak strain (PS) are essential indices for studying the mechanical properties of coal and rock masses, and they are closely related to mechanical parameters such as the elastic modulus (E), Poisson’s ratio (υ), cohesion (C) and internal friction angle (Φ) of coal and rock masses. This study took the No. 2-1 coal seam of Zhaogu No. 2 Mine, in Henan Province, China, as the research object. An RMT-150B servo testing machine was used to test all mechanical parameters, including the E, υ, C and Φ of coal and rock masses. Based on the principle of orthogonal testing, Three Dimensions Fast Lagrangian Analysis of Continua (FLAC3D) was used to select E, υ, C, Φ, tensile strength (Rm) and dilation angle (Ψ) as initial participation factors. Using these six parameters and a five-level combination scheme (L25 (56)), the influence of coal mechanical parameters on UCS and PS was investigated, using the software SPSS for stepwise regression analysis, and a uniaxial pressure-resistant regression prediction equation was established. The research showed that, under uniaxial compression conditions, the main parameters controlling UCS of coal masses are C and Φ; conversely, the main parameters controlling PS are E and C. UCS and PS exhibit significant linear relationships with these main controlling parameters. Here, a stepwise regression prediction equation was established through reliability verification analysis using the main controlling parameters. This prediction method produces very small errors and a good degree of fit, thus allowing the rapid prediction of UCS. The precision of the stepwise regression model depends on the number of test samples, which can be increased in the later stages of a design project to further improve the precision of the projection model

    The identification and characterization of novel N-glycan-based biomarkers in gastric cancer.

    Get PDF
    BACKGROUND AND AIMS:To identify and validate N-glycan biomarkers in gastric cancer (GC) and to elucidate their underlying molecular mechanism of action. METHODS:In total, 347 individuals, including patients with GC (gastric cancer) or atrophic gastritis and healthy controls, were randomly divided into a training group (n=287) and a retrospective validation group (n=60). Serum N-glycan profiling was achieved with DNA sequencer-assisted/fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). Two diagnostic models were constructed based on the N-glycan profiles using logistic stepwise regression. The diagnostic performance of each model was assessed in retrospective, prospective (n=60), and follow-up (n=40) cohorts. Lectin blotting was performed to determine total core-fucosylation, and the expression of genes involved in core-fucosylation in GC was analyzed by reverse transcriptase-polymerase chain reaction. RESULTS:We identified at least 9 N-glycan structures (peaks) and the levels of core fucose residues and fucosyltransferase were significantly decreased in GC. Two diagnostic models, designated GCglycoA and GCglycoB, were constructed to differentiate GC from control and atrophic gastritis. The areas under the receiver operating characteristic (ROC) curves (AUC) for both GCglycoA and GCglycoB were higher than those for CEA, CA19-9, CA125 and CA72-4. Compared with CEA, CA19-9, CA125 and CA72-4, the sensitivity of GCglycoA increased 29.66%, 37.28%, 56.78% and 61.86%, respectively, and the accuracy increased 10.62%, 16.82%, 25.67% and 28.76%, respectively. For GCglycoB, the sensitivity increased 27.97%, 35.59%, 55.09% and 60.17% and the accuracy increased 21.26%, 24.64%, 31.40% and 34.30% compared with CEA, CA19-9, CA125 and CA72-4, respectively. After curative surgery, the core fucosylated peak (peak 3) and the total core fucosylated N-glycans (sumfuc) were reversed. CONCLUSIONS:The results indicated that the diagnostic models based on N-glycan markers are valuable and noninvasive alternatives for identifying GC. We concluded that decreased core-fucosylation in both tissue and serum from GC patients may result from the decreased expression of fucosyltransferase

    KIF20A Affects the Prognosis of Bladder Cancer by Promoting the Proliferation and Metastasis of Bladder Cancer Cells

    No full text
    Objective. To investigate the expression of kinesin family member 20A (KIF20A) in bladder cancer, the effect of KIF20A on the proliferation and metastasis of bladder cancer cells, and the effect of KIF20A expression on the prognosis of bladder cancer patients. Methods. Bladder cancer tissue and its adjacent tissues were collected from tumour patients. The mRNA and protein expression levels of KIF20A in the tissue samples were detected by qRT-PCR and western blot. Immunohistochemical (IHC) staining was used to identify the expression and distribution of KIF20A proteins in the tissue samples. The relationship between the KIF20A expression and the clinical pathology of bladder cancer was analysed. The effect of the differential expression of KIF20A on the prognosis of patients with bladder cancer was analysed by the TCGA database. The plasmid was transfected into the bladder cell lines T24 and 5637 to construct two stable cell lines with knocked down KIF20A. The effect of KIF20A expression on the proliferation and invasion of T24 and 5637 bladder cells was explored in vitro using the abovementioned stable cell lines. The effect of the KIF20A expression on the proliferation of bladder cancer cells was evaluated by a mouse xenograft model. Results. The expression of KIF20A was significantly higher in the bladder cancer tissues than in the adjacent control tissues. The expression of KIF20A was significantly associated with the degree of pathological differentiation of bladder cancer. Patients with a higher expression of KIF20A had a higher tumour grade and a more advanced stage. The mean survival of patients with a high KIF20A expression was significantly lower than the mean survival of patients with a low KIF20A expression. The in vitro experiments demonstrated that the knockdown of KIF20A significantly inhibited T24 and 5637 cell proliferation and invasion. The in vivo experiments showed that the knockdown of KIF20A significantly inhibited the proliferation of the bladder tumours. Conclusion. KIF20A promotes the proliferation and metastasis of bladder cancer cells. Bladder cancer patients with a high KIF20A expression have a worse tumour differentiation and a poor prognosis. KIF20A may become an independent factor that affects the prognosis of bladder cancer patients and a therapeutic target for bladder cancer

    Study on Rheological and Mechanical Properties of Aeolian Sand-Fly Ash-Based Filling Slurry

    No full text
    Backfill mining is the most environmentally friendly mining method at present, which can effectively control the surface subsidence, improve the recovery rate, and has good social and economic benefits. The purpose of this study is to solve the environmental problems caused by solid waste, combined with the rich geographical advantages of aeolian sand in the Yushenfu mining area of China. The rheological properties of the aeolian sand-fly ash-based filling slurry with different fly ash content are studied by experiments, and the strength development law of the filling body under different age and fly ash content are studied from the macroscopic and microscopic points of view. The rheological experiments showed that the increase of the amount of fly ash has a significant effect on the thixotropy, plastic viscosity, and yield stress of the filling slurry. Additionally, rheological properties of aeolian sand-fly ash-based filling slurry conform to the Bingham model. With the increase of the amount of fly ash, the performance of the filling slurry has been significantly improved. Uniaxial test and scanning electron microscope observation showed that the influence of fly ash on the strength of the filling body was mainly reflected in the late stage of maintenance, but was not obvious in the middle stage. Fly ash particles mainly bear the role of “water reduction” and a physical filling effect, which makes the filling slurry thicker and the internal structure more closely spaced. The volcanic ash reaction of fly ash is lagging behind the hydration reaction of cement; the secondary product of the delayed reaction is filled in the pores of cement hydrates, which can greatly reduce the porosity of the backfill body and increase the later strength of the backfill body. It provides a guarantee for the safe replacement of coal pillars in the working face

    Elevated plasma D-dimer levels correlate with long term survival of gastric cancer patients.

    No full text
    BACKGROUND: Increasing evidence indicated plasma D-dimer could be regarded as a marker in cancers, however, its role in gastric cancer is still largely unknown. METHODS: Plasma D-dimer levels were measured by enzyme linked fluorescent immunoassays and evaluated by receiver operating characteristic (ROC) curves for peritoneal dissemination in gastric cancer and healthy subjects. The overall survival (OS) characteristics were determined using Kaplan-Meier and Cox regression analyses. RESULTS: The average of the plasma D-dimer levels for gastric cancer patients was significantly higher than the healthy subjects. A Spearman correlation analysis showed that plasma D-dimer levels correlated with the depth of invasion, lymph node metastasis, peritoneal dissemination, distant metastasis, tumor size and TNM stage. The mean plasma D-dimer level was 2.20 ± 1.51 µg/mL in peritoneal dissemination patients and 1.01 ± 0.79 µg/mL in non-peritoneal dissemination patients (P<0.001). Additionally, the mean plasma D-dimer concentration in patients alive at the final follow-up evaluation was 0.79 ± 0.72 µg/mL,which was significantly lower than the amounts determined for the deceased patients (1.36 ± 1.13 µg/mL) (P<0.001). The AUC of D-dimer was 0.833 (95%CI: 0.780-0.885). At a cut-off value of 1.465 µg/mL, the D-dimer measurement had a sensitivity of 78.00%, a specificity of 83.76% and an accuracy of 82.59%. The median OS was 48.10 months (95% CI: 43.88-52.31) in patients with plasma D-dimer levels less than 1.465 µg/mL and 22.39 months (95% CI: 16.95-27.82) in patients with plasma D-dimer levels exceeding 1.465 µg/mL (log-rank test, P<0.001). Importantly, plasma D-dimer levels exceeding 1.465 µg/mL were significantly associated with poor OS, as determined using a multivariate Cox regression analysis (hazard ratio [HR], 2.28; 95%CI: 1.36-3.81; P = 0.002). CONCLUSIONS: Plasma D-dimer levels are increased in gastric cancer patients and may be a valuable biomarker for peritoneal dissemination, with high D-dimer levels predicting poor outcomes for gastric cancer patients

    Experimental Study on the Mechanical Properties and Failure Characteristics of Layered Aeolian Sand Paste-Like Backfill—A Case Study from Shanghe Coal Mine

    No full text
    Filling mining is an important direction in green coal mining. In the filling site, a layered filling body can be formed due to technological problems. In this paper, we take Shanghe Coal Mine (Shaanxi Province, China) as the background. In order to explore the mechanical properties and failure modes of layered backfill, specimens with different layered proportions (1:1, 1:3, 3:1) were made and studied concerning the aspects of wave velocity, porosity, strength and failure modes. The experimental result demonstrates that with the increase of curing time and fly ash (FA) content, the porosity of ASPLB decreases, the wave velocity and the strength increases. In addition, the layered structure has a significant effect on the strength and failure mode of the specimen. Uniaxial compression experiments showed that after 28 days of curing with Ratio III, the strength of layered backfill (LB) was reduced by 14% and the strength of 3:1 LB was increased by 16.7% and 40% compared with 1:1 LB and 1:3 LB, respectively. A digital speckle experiment showed that the failure mode of ASPLB is a vertical fracture without penetration, and the fracture propagation of layered ASPLB is hindered by the stratification. Based on the above research, the scheme that meets the requirements of the Shanghe Coal Mine is determined, and its reliability is verified, providing guidance for scientific stratification and the filling of gob
    corecore